Connectivity of the Internet of Things

When it comes to the Internet of Things (IoT), connectivity is crucial to keep in mind due to the fact that smart technology is completely reliant upon communication. There are various communication protocols and network infrastructures that can alter the way IoT technology is used as well as its level of operation.

Network topology is important to understand because it changes the way communication protocols are used. The main IoT network topologies consist of Point to Point (P2P), Star, Mesh, and Hybrid. P2P is a link between two endpoints that allow devices to communicate on a dedicated channel. Star network configurations include multiple nodes that connect to a central device; each node can’t directly communicate with each other, only through the central device. These networks are easy to setup but if the central device fails than the network will fail. Mesh networks consist of multiple nodes, each connecting to each other. This can be used for establishing consistent connection but there is a high amount of redundancy. Hybrid networks are simply combinations of different topologies, but they are often very complex and expensive to setup.

The different communication protocols can be utilized in an effort to maximize efficiency and optimize IoT technology for any environment. The common types of communication protocols include Wi-Fi, Thread, ZigBee, Bluetooth, RFID, and NFC.

Wi-Fi: This is an extremely common communication protocol that is essentially everywhere in our lives. Wi-Fi makes it extremely easy to add/remove devices, has a lot of range, and is able to penetrate walls and other obstacles. That being said, there is lower bandwidth due to the lack of wired connection, and Wi-Fi networks are not the most secure. It is perfect for saving power and having quick and efficient communication. Wi-Fi is a star-based network; the communication goes from various wireless nodes to the wireless access point (WAP).

Thread: Thread is a communication protocol that is very reliable, consumes minimum power, and enables machine to machine (M2M) communication. In fact, it was designed for the purpose of connected home applications. The Thread protocol can use three main device types including border routers, sleepy end devices, and routers/router-eligible end devices. It is primarily based on IP, making it extremely simple to connect with other IP-based networks. Unlike Wi-Fi, if a single point goes out, the whole network won’t go down; it supports a full mesh-based topology. It is also a very secure communication protocol. However, it is not very good for DIY consumer installation in homes due to its complexity.

ZigBee: ZigBee is very similar to Thread as it is created by an alliance of several companies in an effort to maximize home and industrial automation. It fulfils the requirements of a mesh network, but can support star and tree topologies as well. The three main devices defined in ZigBee protocol are different than Threads, they include ZigBee coordinator, router, and end device. It is essentially the same thing as Thread, but it does come with some additional features. ZigBee RF4CE was developed to be a universal remote for the smart home, and ZigBee Green Power is a mode that ensure extremely low power consumption. A downside of this protocol is the fact that it has short range and low data speeds.

Bluetooth: Bluetooth utilizes the 2.4GHz spectrum in the ISM band. It is an ad-hoc type of network, thus enabling M2M communications. Bluetooth Low Energy (BLE) is the current type being used within the IoT world, but there are three different branches of Bluetooth technology. Bluetooth Classic is the traditional type of Bluetooth, which has a higher throughput and is primarily used for transmitting files. Bluetooth Smart is essentially the same thing as BLE. It transmits information and was developed for applications with low-duty cycles. It is also important to note that Bluetooth Smart cannot communicate with Bluetooth Classic. Bluetooth SmartReady is the last classification type; these devices are essentially the devices that act as hubs, such as computers and phones. This type of Bluetooth supports both Classic and Smart.

RFID: Radio-Frequency Identification (RFID) is used as a communication method for being able to identify and track various devices wirelessly. This is an extremely simple communication method that can be used for a wide range of applications. RFID tags are able to read and write information and can be either passive or active. If they are active, they have an on-board power source, giving them more range and the ability to search for a reader. Passive tags don’t have an internal power source but can be activated when touched against a reader. Readers are purely used for receiving information from tags.

NFC: Near-Field Communication (NFC) is a communication protocol similar to RFID, but there are several things that differentiate the two. NFC-enabled devices are able to communicate information from one device to another simply by tapping the two device together. This is particularly useful in smartphone technology because it reduces the amount of time and effort in connecting devices. NFC is an extremely short-range communication method, but it is probably the most power efficient protocol. NFC devices can either be the initiator (the device that starts the communication) or a target (the device that receives information from the initiator).

The IoT is continuing to grow at a rapid pace, making it more important than ever to understand the best applications of various communication protocols. Some of them are designed with the IoT in mind, while others are not. As the technology continues to grow, it is reasonable to expect more efficient uses of existing protocols in addition to more powerful, new protocols.

For more information: https://learn.sparkfun.com/tutorials/connectivity-of-the-internet-of-things

Simplifying IoT: Connecting, Commissioning, and Controlling with Near Field Communication (NFC)

By Nathan Rockershousen, Technical Writer

The Internet of Things (IoT) is in the process of transforming the way we live our lives by improving the quality of life with technological advancements in efficiency and safety. Consumers will be among the biggest beneficiaries as the home environment is one of the main platforms for the advancement of smart ecosystems. The habits of individual consumers will be detected by devices within smart home ecosystems and then that information will be used to optimize the environment. The connectivity of the IoT will enable the seamless communication among devices. Near Field Communication (NFC) can be used to help developers utilize internet-enabled devices in an effort to maximize the benefits of the IoT in daily life.

It is evident that NFC will be beneficial for smart home devices as nearly 40 billion connected devices are expected to be in use by 2020. NFC provides a simply solution for connecting IoT devices to a network. Any device that is lacking a quality user interface (UI) can be given user-friendly controls with a single tap via NFC. In addition to its ease of use, other benefits include explicit interaction through close proximity interactions, read and write capabilities, and communication with devices that are powered down. NFC is a low cost and low energy solution that will enhance the IoT experience.

Setting up networks of IoT devices clearly has several benefits, but enabling a connected smart home does pose some challenges. A pressing challenge is the difficulty of adding and removing devices within a network. The ability to manage devices can often be difficult when dealing with headless devices that don’t have a built-in UIs. There isn’t really a single way to setup various devices within a smart home environment as users are typically required to follow manufacturer-specific commissioning methods. NFC can be used to resolve these issues and improve the overall user experience.

There are many other challenges that are facing the IoT. However, NFC can offer solutions to some of the following concerns:

Commissioning Devices: As mentioned before, there isn’t a standard protocol in terms of the commissioning process for IoT devices. Users are confronted with too many different methods for adding devices to a network, especially when there are no UIs available. NFC uses a single tap, or proximity to commission a device, thus creating a standardized mechanism for adding devices to a network.

NFC-Based Wi-Fi/Bluetooth Pairing: Most IoT devices connect to a network via Wi-Fi or Bluetooth within a smart home environment, making it more important than ever that they operate with comparable efficiency. In terms of Bluetooth, the NFC Forum and Bluetooth SIG have collaborated to speed up the Bluetooth pairing process. This means that the very slow and time consuming process of device discovery and paring will be eliminated by using the NFC tap to enable an instant and secure connection. The NFC Forum also has been working with the Wi-Fi Alliance to make it easier to connect to wireless networks. Once the user taps the NFC device to the NFC tag for their Wi-Fi network, the device will configure itself and instantly connect without the user having to find the network name (SSID) or manually enter a password.

Headless Device Commissioning: Devices that don’t have a UI don’t have an easy way to add them to a network. Tapping these headless devices against an NFC tag with the networking key built-in will remove the headache of commissioning these devices. NFC is used to establish a secure and quick connection and then can erase the network key from the tag to protect it from being accessed by an unauthorized person.

Controlling a Device with No User Interface: There are a variety of smart devices such as light bulbs, environmental sensors, in-wall outlets, and more, that don’t include an integrated visual display. Even though Wi-Fi and Bluetooth can provide some IoT interactivity, there are still several issues when setting up and configuring devices. NFC offers a very simple and secure method for controlling IoT devices that don’t include a UI. Input interactions (network provisioning and configuration) and output interactions (reporting information and diagnostics) are enabled via NFC.

Access Control for the Smart Home: Environments such as condominiums and high-end apartments have multiple families living in them, which usually requires a massive amount of mechanical keys in order for everyone to enter their homes. Mechanical keys are expensive, time consuming to distribute, and can easily be copied. NFC offers a solution by giving property managers the ability to give tenants a smart card or mobile application to access their homes. Keys can be sent to friends and family members with no cost, and a record will be kept of who enters and exits the home. NFC technology will provide a secure, cost effective, and flexible rekeying solution for property managers.

Many of the current problems facing the IoT in terms of user-friendliness and accessibility will be resolved with NFC. The implementation of NFC can unlock the true power of a large assortment of IoT devices within a smart home ecosystem. NFC technology can enhance the user experience in a secure and flexible manner at a very affordable price. The potential impact that NFC will have on the IoT is widely recognized within the NFC Forum and the IoT SIG.

The Internet of Things Wins the Gold Medal in Rio

By Nathan Rockershousen, Technical Writer/Marketing

Every four years, the world’s best athletes come together to represent their countries and demonstrate their superior athletic ability. The spectacular showmanship displayed from the start of the opening ceremony, all the way to the end of the last competition, can make it hard to see some of the other amazing things that occur during the Olympics. The 2016 Rio Summer Olympics will include a variety of cutting-edge Internet of Things (IoT) technology that will assist in creating and improving the beautiful showcase of events that we have come to adore.

The Olympics are often associated with the iconic image of the interlocking colored rings, but these might not be the rings people are thinking about after this year’s Olympics. There is a new set of internet-connected rings that will take the stage in Rio. Visa has developed an IoT ring that can be used as a payment method, thus replacing the need to carry around debit and credit cards. Athletes at the Olympic games will be provided with these rings as it is a burden to worry about carrying payment information around between events. These rings use Near Field Communication (NFC) technology, ensuring that the rings will only be able to operate when touched against a reader. In addition to this, they run on very low power and can be deactivated from a smartphone. If this technology proves to be secure and convenient for the world’s best athletes, it will definitely be something that will be brought to the market in the near future.

Smart technology is not only making life more convenient for athletes, but it is also helping them stay healthy for the Olympics. Wearable technology makes it easier than ever to monitor the health of Olympians, allowing for them to perform at the highest level possible. One of the most innovate wearable solutions is the Hexoskin smart shirt, which is a Bluetooth shirt that is able to monitor things such as heart rate or breathing and sleeping patterns. This allows for a completely accurate analysis of an athlete’s body and can help them make the changes necessary to improve their performance.

Additional improvements in wearable technology are being designed to ameliorate the performance of athletes in specific Olympic games. A prominent example of this technology can be observed in sensor that is attached to shoes called TUNE, which was created by Kinematix. These sensors allow athletes to monitor their feet when they are running, allowing for detailed insight on their running patterns. This can help provide suggestions on improving technique and form, as well as providing a running program optimized for anyone’s needs. Another useful technology that is making cycling more advanced is the smart cycling glasses, Solos, by Kopin. Cyclists can wear these glasses and be able to access real-time data on their performance from a smartphone. These technological advancements are among the many that are helping athletes improve in their competitions.

The integration of wirelessly-enabled technology and physical performance has provided Olympians with the ability to increase their range of abilities. That being said, those athletes who do not utilize the innovative IoT technology will have a severe handicap when it comes to performance. Smart technology is not only helping Olympians succeed, but it is also helping the games be judged and monitored in more detail. There are a variety of sensors that are being used to provide more accurate and real-time analysis of Olympic games. The IoT is enabling many athletes to improve their skillset and bring home a prestigious gold medal.

Plug-and-play NFC portfolio expanded

The plug-and-play Near Field Communication (NFC) portfolio developed by NXP has officially been expanded. The upgraded portfolio has been extended with the Arduino add-on boards (Kinetis, LPCXpresso, i.MX, and QorIQ), allowing for faster NFC prototyping and expansion. In addition to this, the release of the PN7150 NFC controller will make it a much simpler process to integrate NFC technology within electronic devices.

The new and innovative PN1750 is perfectly equipped for several applications including home network gateways, set-top boxes, routers, and more. Adam Justice, Vice President of Grid Connect, describes the significance of the plug-and-play NFC portfolio expansion; “NXP’s robust portfolio of NFC controllers enable an easy integration of NFC technology to consumer devices, while instantly making them smarter, more intuitive and easy to use.” This technology will make it much easier for consumers to install their smart home devices.

Read more: http://www.electronicspecifier.com/micros/plug-and-play-nfc-portfolio-expanded