Cloud Services are the Future of the IoT

By Nathan Rockershousen, Technical Writer

The Internet of Things (IoT) is composed of an assortment of connected devices, but without cloud computing services, these devices wouldn’t have much more functionality than the standard household device. This is because the cloud allows devices to outsource the analysis and storage of any data that is collected through their connected sensors. The cloud’s internet-based computing methods act as the brain for IoT devices, removing the boundaries of inter-device, memory and space constrictions.

The IoT is growing at an exponential rate, making cloud services more important than they have ever been before. In order for the cloud infrastructure to accommodate for the mass amount of data being stored and transferred within the cloud, it will need to be developed at a rate similar to IoT technology. The cloud was designed on the very basis of being able to store information remotely, making it the optimum environment for the interconnectivity of internet-enabled devices. If the IoT industry plans to succeed, it is critical that the significance of cloud services is recognized.

There are many benefits offered by the cloud that would enhance the world of smart technology. The ingenious decision to move the serious data processing functionality of these devices to the cloud has opened the door for further technological advancements. Using the cloud for big data storage and analytics has done two main things that have helped enable the accelerated development of IoT technology. The first thing it does is enable devices to be smaller and use less power, making them much easier to integrate within any home environment. The second is that it makes it possible to continuously update the firmware as needed, which removes the burden from consumers and allows devices to be used for longer periods of time.

The overall accessibility and user-friendliness of IoT devices can be accredited to the power of the cloud. Having devices that every consumer can deploy within their smart homes is definitely a positive for the IoT. That being said, the cloud is able to do so much more for smart technology than simply make it easier for consumers to use devices. Creating a network of devices is entirely dependent upon having a reliable method of communication. The implementation of cloud infrastructure in IoT devices enables the ability to utilize multiple devices in a single network, while communicating simultaneously. Once multiple devices are communicating within the same cloud, the information and data that is collected can be accessed by all devices, thus establishing a more synchronized system.

This always available, web-based service is a perfect vehicle for helping the IoT thrive. Current cloud infrastructure isn’t quite large enough to support the expected rise in IoT devices over the next couple of years. That being said, more advanced cloud infrastructures are being developed to help compensate for the influx of connected technology. As the network of devices continue to grow, it will be crucial that the capabilities of the cloud are maintained as it is truly the only technology available that is equipped for storing and analyzing all the data created by the IoT.

The Future of Music and Technology

By Nathan Rockershousen, Technical Writer

Many believed that the integration of technology and musical instruments reached its peak with the creation of instruments such as the electric guitar and keyboard, but the music world is continuing to embrace the power of technological innovation. Learning how to play an instrument has always been considered something that requires a lot of time to learn and perfect. The goal of infusing technology and musical instruments is to turn music into something that is much more accessible for users, making learning to play an instrument easier.

Technological advancements have increased the functionality of individual instruments. The ability to play multiple instruments with one device has created what is now called a multi-instrument. The Artiphon INSTRUMENT 1 is a great example of a multi-instrument, as it allows musicians to tap the keys of a piano, strum a guitar, loop a beat, and more, all from a single instrument. This technology-based smart instrument can be connected to a smartphone, tablet, or computer to access different music apps. It is designed to optimize the experience of playing music by letting users create whatever they want with a powerful, portable, and simple device.

Even though this device is not the only electronic instrument on the market, it captures some of the benefits of having smart, connected instruments. The INSTRUMENT 1 comes with the Artiphon app to help customize the way music is played, making it possible to do something like play a piano by strumming it. This removes a lot of the boundaries placed on specific instruments due to their design. The sounds associated with traditional instruments can be altered and utilized in ways that have never been heard before. There are also digital strings that never break and allow for the instrument to be strummed as seamlessly as the real instrument.

This device is among the many that have begun to revolutionize the way music is played. Devices are not only becoming more powerful and customizable; they are becoming more user-friendly. Instruments are now very flexible in terms of the sound they can produce, making it easier for musicians to create the music they want. Technological instruments are easier to learn and are more connected with the ability to access a variety of different apps and social platforms. All of these new instruments are assisting in the democratization of music by making it accessible for everyone to develop their own unique sound.

Smart Cities Are No Longer Optional

By Nathan Rockershousen, Technical Writer

The invasion of connectivity has influenced large cities around the globe to embrace the Internet of Things (IoT) as the all-purpose solution for improving the quality of life. As the population of people living in cities continues to grow, the multitude of wasted resources will increase from an already large amount. In order to support the changing infrastructure of city life, smart technology needs to be further implemented in the form of devices and vehicles in order to reduce the consumption of valuable resources such as energy, gas, and water.

Smart technology has barely reached its threshold of possibilities at this point in time. There has only been a handful of European and American cities that have begun to implement new technology. That being said, the success of combining IoT technology with the physical city infrastructure in the few existing smart cities has provided cities stuck in the past with overwhelming evidence of how the lives of citizens can be vastly improved with smart technology. The issue is not in cities not being able to access the technology; there are several industry leading companies such as Cisco, Intel, Siemens, and many more, that are creating smart solutions with innovative technological advancements. It is a matter of cities being willing to take a leap of faith towards a future full of efficient and cost-effective solutions.

The municipalities that have already embraced the IoT have drastically enhanced the quality of city life while reducing spending and easing the pain of city congestion. There are a couple of great examples of how cities in the United States have implemented this technology. San Francisco has begun to integrate sensors into their streets and parking spots to help drivers avoid traffic and find open parking spaces quickly. San Antonio has smart LED streetlights, which can alter their brightness levels in instances of fog or rain to improve the road visibility for drivers. These are among the many innovations that are making cities easier to navigate and live in while improving existing safety standards.

As more cities begin to adopt the features of what has been deemed an IoT revolution, it will be important that there are standards in place. These standards will make the most innovative tech much more synonymous solutions in cities around the globe, which will assist in distinguishing solutions that work from solutions that don’t. Ken Briodagh, writer for the IoT Evolution, describes the need for standards:

“As each city seeks to address its most pressing needs, or move toward the implementation that has the most potential for success, the leaders need to start working together with each other to share knowledge and intelligence about these projects so the successful ones can be replicated and the failures won’t be” (Read more: iotevolutionworld.com).

As IoT technology starts to become a more central part of city infrastructure, standards will begin to develop at a much more successful rate. Converting a city into a smart city will not happen overnight. It is unrealistic to expect the immediate integration of smart technology around the world, but what can be expected is cities seeking solutions in IoT for their specific and pressing needs. As time goes on there will be a global peak in the production of IoT devices; if cities continue to have success in improving the quality of life with smart technology, then the widespread adoption of the smart city is an inevitable, but necessary step in creating a more resource-efficient society.

The Internet of Things is Transforming the Political Landscape

By Nathan Rockershousen, Technical Writer

The nature of political campaigning is changing rapidly as the intrusion of the Internet of Things (IoT) within popular culture continues to expand at a rapid rate. In the past, the infrastructure of political campaigns was heavily based on polling, surveys, door-to-door campaigning, and cold calls. These methods were deemed very effective among politicians at the time, but in the modern era, relying on these tactics as a means to learn more about voters is a waste of time and resources. IoT technology has changed the way voters interact with the government as more information about their habits and beliefs will be tracked and analyzed with the sensors built into this technology.

One of the first politicians to take full advantage of the technological advancements within society was Barack Obama in his 2008 campaign. Even though he didn’t use the IoT directly, he utilized social media in similar way to how the IoT can be utilized. Obama’s campaign team collected and analyzed an abundance of data from various social media sites in order to learn who to target their messages toward and where to send them. The success of this campaign with the use of online data analysis has caused the IoT to become a valuable political tool.

The most relevant use of IoT technology within a political campaign can be the ability to gather lots of data. In a Politico article about IoT and politics, author Phil Howard states, “instead of small survey samples with noticeable error margins and carefully worded questions, the device networks will generate many details about our lives — all the time.” The room for error in data collection is significantly reduced and the efficiency is vastly improved using big data analysis. The IoT is always connected and always gathering data to be analyzed, which will provide the government and politicians with a completely accurate collection of voter behaviors and attitudes.

The ability for political campaigns to understand the real-world behavior of voters will be beneficial for both citizens and politicians. The politicians will be able to fully understand the current needs of citizens and anticipate what they will want in the future. The more data citizens produce, the more their needs will be brought to attention by politicians. Instead of politicians trying to guess what citizens want, the precise data that is collected will be beneficial for both parties in fulfilling their needs.

The IoT is removing a significant amount of the direct interaction between political campaigns and voters. Some of the old campaigning methods will be rendered useless with networks of internet-enabled devices collecting mass quantities of behavioral voter data. The infrastructure of political campaigning has transformed from an “act then observe” approach, to an “observe then act” approach. Politicians will be actively trying to meet the needs of voters based off of data that is collected through the IoT. The IoT allows politicians to have a thorough understanding of voter desires and needs, which will revolutionize the political process.

What Interoperability Means for the Internet of Things

By Nathan Rockershousen, Technical Writer

The Internet of Things (IoT) is reliant upon connection, making communication one of the most rudimentary functions of internet-enabled technology. Interoperability opens up endless opportunities for IoT devices as it ensures that devices will be able to communicate with each other and store data in a central location. The IoT will be able to fulfil its promises of convenience and functionality if multiple devices can be controlled simultaneously while being able to communicate and transfer data with each other.

A majority of the companies that are manufacturing IoT technology are trying to create platforms and devices that will be accepted as the “industry leading solution.” However, this culture within the IoT industry has led to a large assortment of devices that have to be controlled as separate entities and from different apps. The fact of the matter is that consumers simply don’t want to have 50 different devices, each with their own app, that operate independently of each other. The growth of the industry will be limited until manufacturers begin to collaborate in developing devices that will work together within the same network.

Manufacturers clearly understand that interoperability is a necessity for the IoT to continue to grow. So why hasn’t a standardized control system been created? The answer is simple: money and brand recognition. Each company wants to be the one that develops the ultimate “hub” for controlling IoT technology as it will come with a major payout. This isn’t necessarily a bad thing; it just means it will take more time to reach seamless interoperability than it would if there were more collaborative efforts. That being said, there are still some open-source initiatives to create interoperability that have shown signs of promise such as Qualcomm’s AllSeen Alliance.

When it comes to the individual corporations that are trying to create hubs for controlling smart technology, it appears that Apple is on the verge of creating total interoperability for HomeKit products. The upgraded Apple operating system, iOS10, has transformed the way HomeKit is used with its addition of the Home app. This app allows for any HomeKit device to be controlled from a central location. This means that instead of going to an app for each manufacturer, all devices can be controlled in the hub Apple has integrated within their new operating system. Companies like Google and Microsoft have also created similar smart home platforms, but they don’t quite offer this level of interoperability and don’t seem to have as much traction in the consumer world. These developments in HomeKit are great strides in achieving interoperability within the IoT.

Even though HomeKit has achieved a previously unseen level of interoperability, it still isn’t quite what consumers want in terms of creating a smart home that is completely connected. This is because HomeKit products are the only products that can communicate and operate within this network, thus limiting the device integration to Apple approved devices. This isn’t a bad thing for Apple because many other tech giants are trying to create this same level of interoperability for their respective smart home platforms. At this point in time, this segregated version of interoperability is the best consumers will get until these large corporations put their differences aside.

The current trends within the IoT industry are unlikely to change anytime soon due to the fact that smart home technology is still in the late stages of its infancy. As technology becomes more advanced and more efficient, consumers will begin to demand networks that are more connected, with devices that are able to communicate and operate in harmony. The interoperability provided in Apple HomeKit is a significant advancement from previous systems and is an innovative solution at this point in time. It will be interesting to see if large IoT businesses will be willing to work together in an effort to create a centralized hub that can control and communicate with any type of smart device.

The Internet of Things and Bluetooth

By Nathan Rockershousen, Technical Writer

Despite its name, the Internet of Things (IoT) is not constricted to purely internet-based connectivity. In fact, Bluetooth Low Energy (BLE) solutions are increasing the functionality of IoT devices more successfully than via the internet, creating a more reliable framework for further connectivity. BLE technology will enhance and optimize the overarching operability of smart home devices by creating faster communication speeds and extending signal range.

Even though using the internet to connect devices works very well, it can have inconsistencies in its connection and shorten the battery life of various devices. These issues can be resolved through the use of BLE technology. Using BLE in IoT technology will allow devices to operate for extended periods of time on small power sources. In a readwrite article, it was stated that the new updates to Bluetooth technology made it possible for a coin-cell battery to last for several months, or even several years. Implementing Bluetooth technology within different IoT devices will help make managing a smart home a very energy efficient process.

The improved functionality of the IoT with the use of BLE goes far beyond simply saving power. BLE has the ability to extend the range of connection between devices by nearly four times that of a Wi-Fi network. This makes it a more reliable method for connecting numerous smart devices throughout a home environment. Not only is there a further range, but the communication speeds are revamped and much more capable to fulfill the demands of the always on and always communicating IoT devices.

Smart devices will be able to take full advantage of increased communication speeds and range due to the fact that BLE utilizes mesh networking. This is a network topology that allows for each device to be fully connected to each other within a network, allowing each node to assist in data distribution. The consumer benefit of mesh networking is explained by NXP; “Applications for Bluetooth mesh networks include those found in most every consumer’s home: door locks, lights, HVAC systems, and white goods (washers, dryers, refrigerators, and so on).” A mesh network is reliable for maintaining a smart home environment because individual devices can still communicate if one device runs out of power or is disconnected.

An increasing amount of manufacturers are beginning to integrate Bluetooth technology within their IoT technology. BLE will improve the overall functionality of the IoT and aid in establishing much more sturdy networks that will sustain the operation of numerous devices. This will help consumers create more efficient and powerful smart home environments.

Humble Beginnings of the IoT

The Internet of Things (IoT), that has been portrayed as an impending revolution, is not a new concept, but is the culmination from many years of connecting objects through computer networks. Kevin Ashton didn’t coin the phrase we use today until 1999 (while referring to RFID tags in supply chains), but the idea that he was employing came about earlier in the 90s when machine-to-machine (M2M) industrial solutions offered closed networks for device communication. Although these types of connections are not new to the tech world, they have only recently gained more ground in potential applicability.

This past October, the Internet Society put out an IoT overview and marked a number of key trends that have sparked the recent interest and excitement regarding connected devices. The pervasiveness of cheap connectivity has dramatically increased over the past few years, which is visible in one way because of the ubiquity of home Wi-Fi networks. In addition, the widespread adoption of IP-based networking creates an avenue for interoperability between devices.

Advances in circuit development and its miniaturization have also drastically changed the way we think about connectivity. The smart phones that many of us have in our pockets possess the processing power which surpasses some of the supercomputers of the 90s. Implementing internet connectivity into a device is drastically more advanced compared to when Kevin Aston first praised the possibilities of RFID and can be accomplished in much more diverse applications.

Finally, the most recent developments in data analytics and cloud computing have boosted the excitement to the point it’s at today: with hundreds of articles postulating the potential use-cases and applicability of the IoT. These movements really allow for the data sharing capabilities that enables a product to be “smart” and establish the support system for powerful third-party developers.

While it is exciting to visualize what the IoT will look like when it finally arrives, it’s helpful to look back a little and see how far we’ve come already. The integration of the internet into our daily lives has been an ongoing process for many years, and a lot of the benefits of these trends are soon to become a reality.

For more information, check out the Internet Societies’ overview: http://bit.ly/1XO2YGf

IoT: Converging IT and OT

By Nathan Rockershousen, Technical Writer

The continuously expanding network of internet-enabled smart technology is transforming the current framework that constitutes the Internet of Things (IoT). Historically, Information Technology (IT) and Operational Technology (OT) have been two completely separate and distinct domains. The importance of physical equipment for monitoring and detecting change in industrial processes through OT has never been truly connected with the processes of electronic data exchange found in IT. However, the integration of wireless sensors into IoT technology is altering the infrastructure of traditional industrial processes. The convergence of IT and OT is an inevitable and necessary step in unleashing the true power of large-scale connectivity via the IoT.

The vast assortment of physical objects being connected to the internet provides manufacturers with the ability to collect and analyze data instantaneously. These networks of devices generate a plethora of data, allowing for the creation of intelligent and immediate solutions. This process is where the lines begin to blur regarding the various IT and OT processes. Traditionally OT infrastructure would require those in charge of operating and maintaining a device to physically process its data in the field. The wide-spread acceptance of gathering data via the internet has enabled workers to access any needed operational data, allowing for analysis and monitoring without having to waste more human resources.

The rapid and continuous growth of the IoT is making the integration of IT and OT environments an inevitable repercussion of increased connectivity between internet-enabled devices. The fundamental technology (software, platforms, etc.) behind OT systems are adapting to operate on a similar level to IT systems. The inherent similarities between modern OT and IT will make it easier to manage an integrated system as opposed to two separate entities. Gartner, which is an IT research company, stated “A shared set of standards and platforms across IT and OT will reduce costs in many areas of software management, and reduced risks come from reducing malware intrusion and internal errors” (Gartner). Efficiency within a company will see an exponential increase with the convergence of IT and OT.

Improving efficiency is only one of the many benefits of implementing an integration system between IT and OT systems. The convergence between these two fields will provide businesses with more information to make smarter decisions in terms of business processes. The integration of IT and OT will enable further analysis of products through data, which will lead to performance improvements that can increase the satisfaction of consumers. Being able to coordinate efforts between IT and OT within an organization is a cost-efficient method in reducing missteps in decision-making.

How Time-Sensitive Networking Enables the IIoT

The world’s first time-sensitive networking (TSN) testbed is being developed in a collaborative effort to change network infrastructure so that it will enhance the Industrial Internet of Things (IIoT). As this develops, it is essential that Industry 4.0. Machine designers, builders, and users have reliable and secure access to smart edge devices. This will force the current, standard network technologies to transform in an effort to meet the requirements of the next generation of industrial systems.

The testbed itself was designed to assist in creating a new wave of innovative technologies, products, applications, and services for the industrial internet market. The Industrial Internet Consortium (IIC), comprised of the corporations developing the testbed, are attempting to create a TSN in an “ecosystem of manufacturing applications,” which is based off of new Ethernet IEEE 802 standards. The goal of the testbed is to provide insight on the security of a TSN as well as highlight its real-time capabilities through the use of standard and converged Ethernet.

In order for TSNs to be taken seriously, it will be crucial that there are sufficient security measures utilized in order to protect the safety of IIoT users. It is essential that the TSN security is integrated as a layered system, meaning security is implemented throughout the network, because simply adding security as an additional feature at the end of development (air-gap security) leaves the network vulnerable as it is only a perimeter-based measure of defense. One beneficial aspect of time-sensitive networking is its ability to determine the exact instance data was sent and when it is supposed to arrive; if anyone intercepts packets of data it will be easy to tell. That being said, TSNs require a central management aspect that have the power to alter entire networks, which could be a challenge in terms of developing security.

The use of deterministic Ethernet will alter the various safety systems for TSNs by allowing messages to be scheduled from safety applications in order to provide high availability for safety systems. The real-time, synchronous mechanisms of the deterministic Ethernet will enable the connection of more devices and more machines, creating a powerful and integrated IIoT. Mike Justice, president of Grid Connect, believes that its use as a control network has the potential to replace other existing networks such as Profibus and DeviceNet.

As the real-time capabilities of deterministic Ethernet continue to develop, there will be several applications that will benefit from the use of a TSN. Machine-to-machine communication would improve as it needs to operate with low latency and high synchronization. Safety-based communications could access data more efficiently as it is currently mostly done through hardwiring. General motion and robot controls would improve as accessing data through standard communication could be done with ease. Essentially any latency-sensitive application would be much improved through the use of a TSN.

Another interesting application of a TSN can be observed through cloud and edge computing as they provide an infrastructure that will improve the functionality IoT technology. The use of deterministic Ethernet through TSNs could theoretically allow for machine control to be executed within a cloud environment, but there isn’t much room for error regarding latency in communication. Even though consumer and industrial applications of cloud-based machine control have different demands in terms of real-time dependency and data consumption, they are still in the foreseeable future if network stability can be established. Private, local clouds have had success in controlling machines, but large public clouds are more concerning with problems such as technical issues, data confidentiality, and security.

Time-sensitive networking is a feasible option for advancing the IIoT as long as it delivers on its promises of speed and security. It will be a major improvement to converge from information technology (IT) to operational technology (OT) in regards to the security and integration of cloud services. Justice states that “The controls industry is conservative and will follow the IT market in a few years after security issues are well-addressed.” The ability of TSNs to connect machines to the cloud and create real-time data messaging and analytics will improve the overall functionality of the IIoT.

 

Read more at: https://www.controldesign.com/articles/2016/how-time-sensitive-networking-enables-the-iiot/?start=4

The Changing Nature of Human Life and the Internet of Things

By Nathan Rockershousen, Technical Writer

The way consumers interact with the objects in their lives is changing at a pace that once seemed impossible. Connectivity that was recently unimaginable will soon be the standard for all technological devices. The Internet of Things (IoT) goes far beyond industrial applications; consumers will be able to receive updates and information about nearly every aspect of their lives with wirelessly connected smart devices. The push for IoT technology is a push for control. Users will have control over their homes, cars, and even their own bodies through wearables. Even though it may seem intimidating to have technology take such an invasive role in consumer life, the benefits created by connectivity outweigh the perceived intrusive nature of smart devices.

The internet-connected devices that are being implemented as a means to create the ultimate smart home are changing the way individuals interact with their environment. IoT devices allow users to establish a network of smart devices, giving the user the flexibility to build an environment optimized for their needs. Smart home connectivity is enabled through powerful software such as the innovative Apple HomeKit, which gives users complete control over a variety of smart devices. Having the ability to control and monitor different aspects of a home gives the user endless possibilities in terms of setting up a custom, optimized environment.

The ability to control a connected network of devices will help save the user a significant amount of money. The most direct application in terms of money being saved is simply having the ability to reduce power usage. IoT devices give the consumer the convenience of being able to operate different devices on timers and manually control devices with their mobile phones. If a thermostat is being controlled, the user can set the air conditioning to only be on when people will be present in that environment. If various lights are left on when the user leaves their home, they have the ability to turn them off remotely. A washing machine can be set to run its wash cycle during electrical quiet periods. These are just a few of the many ways a smart home can be managed to reduce electricity usage and save the consumer money.

The smart home is still in its infancy. Even though the potential for the IoT to continue to improve human life is easily observable, extremely advanced solutions are still on the horizon. This does not mean that there are not functional and efficient devices on the market today, it simply means that there needs to be more hardware available to develop a true network of connected devices. It is essential to begin to create a personalized smart home as the cost of connectivity continues to plummet and smart home solutions become more sophisticated.